

A Cost-Effective Fluorination Method for Enhancing the Performance of Metal Oxide Thin-Film Transistors Using a Fluorinated Planarization Layer

> Sunbin Deng, Shou-Cheng Dong, Rongsheng Chen, Wei Zhong, Guijun Li, Meng Zhang, Fion Yeung, Man Wong, and Hoi-Sing Kwok

> > 2021/05/17

- 1. Introduction
- 2. Unanticipated ΔV_{th} in Top-Gate (TG) Metal-Oxide (MO) TFTs after Planarization (PLN)
- 3. Fluorination Treatment on Bottom-gate (BG) MO TFTs via PLN
- 4. Conclusion

MO TFTs with Instability Issues

[1] LG Electronics' SIGNATURE website

- [2] Apple YouTube Channel
- [3] IMEC press release

[4] van Breemen, et al. npj Flex. Electron. 4.1 (2020): 1-8.

[5] Ide, Keisuke, et al. Phys. Status Solidi (a) 216.5 (2019): 1800372.

Known electronic structure of a-IGZO with

Main defect forms:

- Oxygen vacancy/deficiency
- Weakly-bonded/ undercoordinated oxygen
- Peroxide
- Low valence state cations
- Hydrogen
- Macroscopic structural defects

A typical V_{th} shift degradation occurred during stress

Stretched-exponential equation:

Thermal Annealing/Oxidation for MO TFTs

Positive impacts of thermal annealing^[1]:

- Oxygen vacancy compensation
- Weakly bonded species removal
- Donor level and conductivity control
- Structural relaxation
- Etc.

A typical process flow of ESL MO TFTs in HKUST

- Substrate cleaning
- Buffer layer deposition
- Gate deposition & patterning
- Gate insulator deposition
- Channel deposition & patterning
- Ø Etch stopper deposition & patterning
- Source/drain deposition & patterning

Post-annealing

- High annealing temperature & Long annealing time
- \rightarrow Large thermal budget
- \rightarrow **NOT** cost-effective

Advanced Annealing/Oxidation Techniques

• Annealing in different gases^{[1]-[3]}

Wet oxygen

Nitrous oxide

• High-pressure annealing^{[4][5]}

Ozone

Annealing atmospheres

[1] Nomura, Kenji, et al. Appl. Phys. Lett. 93.19 (2008): 192107.
[2] Ide, Keisuke, et al. Appl. Phys. Lett. 99.9 (2011): 093507.
[3] Rabbi, Md Hasnat, et al. IEEE Electron Device Lett. 41.12 (2020): 1782-1785.
[4] Yeob Park, Se, et al. Appl. Phys. Lett. 100.16 (2012): 162108.
[5] Kim, Won-Gi, et al. Sci. Rep. 6.1 (2016): 1-7.
[6] Moon, Chang-Jin, et al. ACS Appl. Mater. Interfaces11.14 (2019): 13380-13388.
[7] Nakata, Mitsuru, et al. Jpn. J. Appl. Phys. 48.11R (2009): 115505.
[8] Teng, Li-Feng, et al. Appl. Phys. Lett. 101.13 (2012): 132901.
[9] Kim, Choong-Ki, et al. ACS Appl. Mater. Interfaces3.36 (2016): 23820-23826.

• Irradiation assisted annealing^{[6][7]}

- Lower annealing temperature and shorter annealing time
- $\rightarrow\,$ Reduced thermal budget
- Include additional facility and new materials in existing production lines
- → **NOT** cost-effective

Fluorination Treatments for MO TFTs

- Fluorine: the largest electronegativity (3.98) among all elements.^[1]
- Bond-dissociation energy (D₀): D₀(In-F)= 516 kJ/mol or 5.327 eV > D₀(In-O) = 346 kJ/mol or 3.586 eV^[2]
- Fluorination is more efficient to passivate oxygen vacancy sites than thermal annealing/oxidation
- \rightarrow Better device stability & less thermal budget.

Jung, Kyung-Mo, et al. J. Phys. D. 53.35 (2020): 355107.
Miyakawa, Masashi, et al. AIP Adv. 10.6 (2020): 065004.
Lu, Lei, et al. IEEE Electron Device Lett. 39.2 (2017): 196-199.
Wang, Sisi, et al. J. Soc. Inf. Disp. 28.6 (2020): 520-527.
Ye, Zhi, et al. IEEE Electron Device Lett. 33.4 (2012): 549-551.

- However, many prevalent fluorination treatments are performed under relatively harsh conditions.
- → Physical bombardments on MO channels, result in SS deterioration and newly emerged instability issues.
- Additional fluorination steps are inserted into the existing process flows
- \rightarrow **NOT** cost-effective

Unanticipated ΔV_{th} in TG MO TFTs after PLN (I)

✓ Not only the curing step but also the F-PI PLN layer is helpful for improving device performance.

→ The PLN process is more efficient than conventional thermal annealing.

ILD = Inter-Layer Dielectric PLN = Planarization

F-PI = Fluorinated Polvimide

Unanticipated ΔV_{th} in TG MO TFTs after PLN (II)

Underlying mechanism & Device uniformity

Key electrical parameters of 10 samples TG MO TFTs (after PLN) selected from the top, bottom, left, right, and center of a 4-inch glass wafer

	µ _{sat} (cm²/Vs)	V _{th} (V)	SS (mV/decade)	On-off ratio
Ave.	18.36	0.23	84.8	4.7×10 ⁹
S.D.	0.56	0.20	0.9	1.5×10 ⁸

- ✓ A larger ΔV_{th} → High fluorine and carbon content in the AC bulk → Fluorination treatment brought by PLN.
- ✓ Excellent electrical uniformity → An effective fluorination method for large-area displays and electronics.
- ? **TG MO TFTs** \rightarrow **BG MO TFTs** (with no metallic GE between the PLN and the AC)

TOF-SMIS depth profiles of F⁻ and C⁻ in

Eluorination Treatment on BG MO TFTs via PLN (I)

• Process flow of BG MO TFTs (for active-matrix flat-panel display panels)

Simplified process flow (without 1st and 2nd thermal annealing) → Device F0

Fluorination Treatment on BG MO TFTs via PLN (II)

Planarization efficacy •

Insulation efficacy ٠

by 75 vertical strips (150-nm-thick AI)

 \rightarrow 11,250 sidewalls and 5,625 overlapped mesas (10 μ m*10 μ m)

The fluorinated PLN layer has a good planarization and \checkmark insulation properties and are applicable to general display applications.

Fluorination Treatment on BG MO TFTs via PLN (III)

Device F1 before PLN vs. after PLN

Electrical performance of Device F1 before/after PLN and control device

	Device F1 before PLN	Device F1 after PLN	Control Device F1*
V _{th} (V)	-3.3	-0.7	-1
ΔV_{th} (V)	-	2.6	2.3
Hysteresis (V)	~0.4	<0.1	~0.4
SS (mV/decade)	130.2	80.8	107.8

✓ The PLN process also works for improving the performance of BG MO TFTs.

Fluorination Treatment on BG MO TFTs via PLN (IV)

10-4

10⁻⁴

On-off ratio

SS

(mV/decade)

4.1×10⁹

80.8

*Record low SS among fluorinated MO TFTs

1.5×10¹⁰

81.6

Device F1 vs. Device F0

30

0

10

 $V_{ds}(V)$

5

15

20

- Comparable and uniform electrical performance in Device F0
- \rightarrow The PLN process itself is efficient to passivate defects and activate MO TFTs even with no need for annealing before PLN.
- \rightarrow A shorter production cycle and a lower process thermal budget for more cost-effective manufacturing.

Fluorination Treatment on BG MO TFTs via PLN (V)

TOF-SIMS analysis in Device F0

Fluorination Treatment on BG MO TFTs via PLN (VI)

Device F0 vs. Device NF0

Fluorinated polyimide (F-PI) → Device F0

Non-Fluorinated polyimide (NF-PI) → Device NF0

- Fluorine and carbon mainly origins from the F-PI PLN.
- Increased carbon intensity in the AC of Device NFO is ٠ helpless for performance improvement.
- A fluorinated PLN layer is the key, and performance \checkmark improvement after PLN is attributed to a cost-effective fluorination treatment.

Fluorination Treatment on BG MO TFTs via PLN (VII)

• Device stability against electrical, thermal, and illumination stresses

- After PLN, both F1 and F0 exhibit significantly improved stability.
- PBTS: |ΔV_{th}(F1)| < |ΔV_{th}(F0)| ← more defects in Device F1 are compensated ← longer thermal annealing treatment for Device F1.
- NBIS: $|\Delta V_{th}(F1)| > |\Delta V_{th}(F0)| \leftarrow D_0(M-F) > D_0(M-O) \leftarrow \text{more } V_0 \text{ are passivated}$ by $F \leftarrow \text{Device } F0 \text{ is not annealed before } PLN.$
- $\rightarrow\,$ Fluorination treatment prior to oxidation treatment may lead to an enhanced illumination stability?

Device F0 before PLN

Device F0 after PLN

Device F1 before PLN

Device F1 after PLN

*The results of Device FO before PLN is not shown because of short-circuit.

- 1. We demonstrate a PLN process using fluorinated polyimides that can improve the electrical performance of MO TFTs even without the need for additional thermal annealing steps.
- 2. The underlying mechanism is attributed to the diffusion of fluorine species from the PLN layer to the AC layer and the following defect passivation during the thermal curing of the F-PI.
- 3. Both TG and BG MO TFTs fabricated with the PLN process exhibit significantly enhanced electrical characteristics and stability.
- 4. This study provides a cost-effective fluorination method to reduce the thermal budget and shorten the production cycle in the fabrication of AM-FPD panels.

Thank you for your kind attention!

<u>Sunbin Deng*</u>, Shou-Cheng Dong, Rongsheng Chen, Wei Zhong, Guijun Li, Meng Zhang, Fion Yeung, Man Wong, Hoi-Sing Kwok

*sdengaa@connect.ust.hk

