

A Cost-Effective Fluorination Method for Enhancing the Performance of Metal Oxide Thin-Film Transistors Using a Fluorinated Planarization Layer

> **Sunbin Deng, Shou-Cheng Dong, Rongsheng Chen, Wei Zhong, Guijun Li, Meng Zhang, Fion Yeung, Man Wong, and Hoi-Sing Kwok**

> > **2021/05/17**

- 1. Introduction
- 2. Unanticipated ΔV_{th} in Top-Gate (TG) Metal-Oxide (MO) TFTs after Planarization (PLN)
- 3. Fluorination Treatment on Bottom-gate (BG) MO TFTs via PLN
- 4. Conclusion

MO TFTs with Instability Issues

[1] [LG Electronics' SIGNATURE website](Website link/LG Rollable OLED TV R _ LG SIGNATURE.html)

- [2] [Apple YouTube Channel](Website link/September Event 2019 Apple YouTube.html)
- [3] [IMEC press release](Website link/News release Imec, TNO and Cartamundi develop flexible tags that communicate with standard touch screens _ imec.html)

[4] van Breemen, et al. *npj Flex. Electron.* 4.1 (2020): 1-8.

[5] Ide, Keisuke, et al. *Phys. Status Solidi (a)* 216.5 (2019): 1800372.

Known electronic structure of a‐IGZO with

Main defect forms:

- Oxygen vacancy/deficiency
- Weakly-bonded/ undercoordinated oxygen
- Peroxide
- Low valence state cations
- Hydrogen
- Macroscopic structural defects

A typical V_{th} shift degradation occurred during stress

Stretched-exponential equation:

Thermal Annealing/Oxidation for MO TFTs

400

300 200 100

n

Temp. (°C)

Positive impacts of thermal annealing[1]:

- Oxygen vacancy compensation
- Weakly bonded species removal
- Donor level and conductivity control
- Structural relaxation
- Etc.

A typical process flow of ESL MO TFTs in HKUST

Time (min)

- Substrate cleaning **Buffer layer deposition**
- Gate deposition & patterning
- Gate insulator deposition
- **Channel deposition & patterning**
- **Etch stopper deposition & patterning**
- Source/drain deposition & patterning

Post-annealing

- ❖ High annealing temperature & Long annealing time
- \rightarrow Large thermal budget
- → **NOT** cost-effective

Advanced Annealing/Oxidation Techniques

• **Annealing in different gases[1]-[3]**

Wet oxygen Czone Nitrous oxide

• **High-pressure annealing[4][5]**

Annealing atmospheres

[1] Nomura, Kenji, et al. *Appl. Phys. Lett.* 93.19 (2008): 192107. [2] Ide, Keisuke, et al. *Appl. Phys. Lett.* 99.9 (2011): 093507. [3] Rabbi, Md Hasnat, et al*. IEEE Electron Device Lett.* 41.12 (2020): 1782-1785. [4] Yeob Park, Se, et al. *Appl. Phys. Lett.* 100.16 (2012): 162108. [5] Kim, Won-Gi, et al. Sci. Rep. 6.1 (2016): 1-7. [6] Moon, Chang-Jin, et al. *ACS Appl. Mater. Interfaces*11.14 (2019): 13380-13388. [7] Nakata, Mitsuru, et al. *Jpn. J. Appl. Phys.* 48.11R (2009): 115505. [8] Teng, Li-Feng, et al. *Appl. Phys. Lett.* 101.13 (2012): 132901. [9] Kim, Choong-Ki, et al. *ACS Appl. Mater. Interfaces*8.36 (2016): 23820-23826.

• **Irradiation assisted annealing[6][7]**

Lower annealing temperature and shorter annealing time

- \rightarrow Reduced thermal budget
- 5 ❖ Include additional facility and new materials in existing production lines
- → **NOT** cost-effective

Fluorination Treatments for MO TFTs

- Fluorine: the largest electronegativity (3.98) among all elements. [1]
- Bond-dissociation energy (D $_0$): D $_0$ (In-F)= 516 kJ/mol or 5.327 eV **>** D₀(In-O) = 346 kJ/mol or 3.586 eV^[2]
- \checkmark Fluorination is more efficient to passivate oxygen vacancy sites than thermal annealing/oxidation
- \rightarrow Better device stability & less thermal budget.

[5] Ye, Zhi, et al. *IEEE Electron Device Lett.* 33.4 (2012): 549-551.

- ❖ However, many prevalent fluorination treatments are performed under relatively harsh conditions.
- \rightarrow Physical bombardments on MO channels, result in SS deterioration and newly emerged instability issues.
- ❖ Additional fluorination steps are inserted into the existing process flows
- → **NOT** cost-effective

Unanticipated ΔVth in TG MO TFTs after PLN (I)

• **Before PLN vs. after PLN** Sub. preparation $\frac{1}{2}$ **PLN** Electrical performance of TG MO TFTs **(F-PI)** S/D pad dep. & pat. before/after PLN and control device \mathbf{r} and \mathbf{r} and \mathbf{r} AC dep. & pat. \blacklozenge PLN coating, 10^{-4} **ILD TG TFT** GI dep. pat., & curing **GE** 10^{-6} V_{ds}=10.1 V GE dep. & pat. \bullet Annealing **GI S D AC** ILD dep. $&$ CT $&$ \bullet Data line dep. & \mathbf{V}_{gs} sweep **BL** opening pat. **Glass ILD** $I_d(A)$ 10 TG MO TFT after PLN **GE GI** 10 **S D AC Before BL After Glass** 10^{-12} TG MO TFT before PLN **Control** device Sub. preparation 10^{-1} 5 10 -5 **ILD** S/D pad dep. & pat. -10 **Annealing** V_{qs} (V) **GE** AC dep. & pat. **=GI** GI dep. **S D AC** curina **BL TFT before TFT after Control** GE dep. & pat. Annealing **Glass PLN PLN Device** TG = Top-Gate ILD dep. $&$ CT Data line dep. & BL = Buffer Layer V_{th} (V) -1.4 0.15 -0.4 opening pat. S/D = Source/Drain Control device ΔV_{th} (V) $-$ 1.55 GI = Gate Insulator AC = Active Channel

✓ Not only the curing step but also the F-PI PLN layer is helpful for improving device performance.

 \rightarrow The PLN process is more efficient than conventional thermal annealing.

GE = Gate Electrode ILD = Inter-Layer Dielectric PLN = Planarization

F-PI = Fluorinated Polyimide

Unanticipated ΔVth in TG MO TFTs after PLN (II)

• **Underlying mechanism & Device uniformity**

Key electrical parameters of 10 samples TG MO TFTs (after PLN) selected from the top, bottom, left, right, and center of a 4 inch glass wafer

- \checkmark A larger ΔV_{th} \rightarrow High fluorine and carbon content in the AC bulk \rightarrow Fluorination treatment brought by PLN.
- \checkmark Excellent electrical uniformity \to An effective fluorination method for large-area displays and electronics.
- ? **TG MO TFTs** → **BG MO TFTs** (with no metallic GE between the PLN and the AC)

TOF-SMIS depth profiles of F- and C- in

Fluorination Treatment on BG MO TFTs via PLN (I)

• **Process flow of BG MO TFTs** (for active-matrix flat-panel display panels)

• Simplified process flow (without 1st and 2nd thermal annealing) → Device F0

Fluorination Treatment on BG MO TFTs via PLN (II)

• **Planarization efficacy** • **Insulation efficacy**

 \rightarrow 11,250 sidewalls and 5,625 overlapped mesas (10 μ m^{*}10 μ m)

✓ The fluorinated PLN layer has a good planarization and insulation properties and are applicable to general display applications.

Fluorination Treatment on BG MO TFTs via PLN (III)

• **Device F1 before PLN vs. after PLN**

 \checkmark The PLN process also works for improving the performance of BG MO TFTs.

Control Device F1*

Device F1 after PLN

 V_{gs} (V)

 $\sum_{\alpha s}$ sweep

Before

Control device

10

After

5

Electrical performance of Device F1 before/after

Fluorination Treatment on BG MO TFTs via PLN (IV)

 10^{-4}

• **Device F1 vs. Device F0**

 $30₁$

⁰

5

10

 V_{ds} (V)

15

20

12 *Record low SS among fluorinated MO TFTs

On-off ratio 4.1×10^{9} 1.5 $\times10^{10}$

(mV/decade) 80.8 81.6

SS

 $10⁻⁴$

- Comparable and uniform electrical performance in Device F0
- \rightarrow The PLN process itself is efficient to passivate defects and activate MO TFTs even with no need for annealing before PLN.
- \rightarrow A shorter production cycle and a lower process thermal budget for more cost-effective manufacturing.

Fluorination Treatment on BG MO TFTs via PLN (V)

• **TOF-SIMS analysis in Device F0**

Fluorination Treatment on BG MO TFTs via PLN (VI)

• **Device F0 vs. Device NF0**

Fluorinated polyimide (F-PI) → **Device F0**

Non-Fluorinated polyimide (NF-PI) → **Device NF0**

- Fluorine and carbon mainly origins from the F-PI PLN.
- Increased carbon intensity in the AC of Device NF0 is helpless for performance improvement.
- \checkmark A fluorinated PLN layer is the key, and performance improvement after PLN is attributed to a cost-effective fluorination treatment.

Fluorination Treatment on BG MO TFTs via PLN (VII)

• **Device stability against electrical, thermal, and illumination stresses**

- After PLN, both F1 and F0 exhibit significantly improved stability.
- PBTS: $|\Delta V_{th}(F1)| \leq |\Delta V_{th}(F0)| \leq m$ ore defects in Device F1 are compensated \leftarrow longer thermal annealing treatment for Device F1.
- NBIS: $|\Delta\rm{V}_{th}$ (F1) | > $|\Delta\rm{V}_{th}$ (F0) | \Leftarrow D_{0} (M-F)> D_{0} (M-O) \Leftarrow more \rm{V}_{\odot} are passivated by $F \leftarrow$ Device F0 is not annealed before PLN.
- \rightarrow Fluorination treatment prior to oxidation treatment may lead to an enhanced illumination stability?

Device F0 before PLN

Device F0 after PLN

Device F1 before PLN

Device F1 after PLN

*The results of Device F0 before PLN is not shown because of short-circuit.

- 1. We demonstrate a PLN process using fluorinated polyimides that can improve the electrical performance of MO TFTs even without the need for additional thermal annealing steps.
- 2. The underlying mechanism is attributed to the diffusion of fluorine species from the PLN layer to the AC layer and the following defect passivation during the thermal curing of the F-PI.
- 3. Both TG and BG MO TFTs fabricated with the PLN process exhibit significantly enhanced electrical characteristics and stability.
- 4. This study provides a cost-effective fluorination method to reduce the thermal budget and shorten the production cycle in the fabrication of AM-FPD panels.

Thank you for your kind attention!

Sunbin Deng*, Shou-Cheng Dong, Rongsheng Chen, Wei Zhong, Guijun Li, Meng Zhang, Fion Yeung, Man Wong, Hoi-Sing Kwok

*sdengaa@connect.ust.hk

